Energy
As we step into 2025, R&D organizations are bracing for another year of rapid-pace, transformative shifts.
Read MoreIn today’s competitive R&D landscape, selecting the right technology partner is one of the most critical decisions your organization can make.
Read MoreDec 19, 2022|Energy, Life Sciences, Materials Science, Transformation As a company that delivers Digital Transformation for Science, part of our job at Enthought is to understand the trends that will affect how our clients do their science. Below are three trends that caught our attention in 2022 that we predict will take center stage in…
Read MoreThe ultimate project goal of EnergizAIR Infrastructure was to raise individual awareness of the contribution of renewable energy sources, and ultimately change behaviors. Now ten years later, with orders of magnitude more data, AI/machine learning, cloud, and smartphones in the hands of individuals, this is an idea whose time has come. Author: Didrik Pinte, M.S.,…
Read MoreAs industries rapidly advance in AI/machine learning, a key to unlocking the power of these approaches for companies is an enabling environment. Domain experts need to be able to use artificial intelligence on data relevant to their work, but they should not have to know computer or data science techniques to solve their problems. An…
Read MoreIn this blog article Enthought Energy Solutions Vice President Mason Dykstra looks at the recently published book titled “Real World AI: A Practical Guide for Responsible Machine Learning” in the context of both the technical challenges faced by geoscientists and how to scale. Author: Mason Dykstra, Ph.D., Vice President, Energy Solutions In the newly released…
Read MoreA microseismic event loaded from the Frontier Observatory for Research in Geothermal Energy (FORGE) distributed acoustic sensing (DAS) data into a Jupyter notebook showing energy from a microseismic event arriving at about 7.5 seconds. These microseisms bring information about the process of stimulation. However, in the data set there are relatively few and they are…
Read MoreJoin the 2021 GSH Geophysics in the cloud competition. Build a novel seismic inversion app and access all the data on demand with serverless cloud storage. Example notebooks show how to access this data and use AWS SageMaker to build your ML models. With prizes. Author: Ben Lasscock, Ph.D. Geophysics in the Cloud Competition The…
Read MoreIn an example away from seismic, this shows a thin section, where machine learning techniques can be applied across multiple images, ones previously unused due to the significant demands of expert time, and difficulties in organizing and sharing data. See a demo at: https://www.enthought.com/industries/oil-and-gas/core-analysis/ Author: Brendon Hall, Ph.D., Director, Energy Solutions The SEG 2020…
Read MoreThe SubsurfaceAI custom deep learning application for seismic allows experts to annotate data, identify sequences and, in this example, define a fault complex. This forms the basis of a workflow that allows a seismic expert to apply deep learning to ‘interpret the way experts do,’ creating bespoke models for seismic interpretation. Author: Ben Lasscock, Ph.D.…
Read More