The ultimate project goal of EnergizAIR Infrastructure was to raise individual awareness of the contribution of renewable energy sources, and ultimately change behaviors. Now ten years later, with orders of magnitude more data, AI/machine learning, cloud, and smartphones in the hands of individuals, this is an idea whose time has come.
Author: Didrik Pinte, M.S., CTO
Renewables’ contributions as energy sources and their part in driving business strategies are rising steadily. Multiyear objectives are appearing across companies and countries that rely on renewables, with terms like climate neutrality becoming more familiar. Environment, social, and governance (ESG) strategies are now used by all major companies, with renewables playing an important role, particularly for major oil and gas operators.
Concurrently, the public is becoming more aware of the drive to utilize renewables. However, positive information demonstrating how renewable energy can fit into their everyday lives is limited. Such visibility at the individual level will be necessary to influence behavior and to gain people’s confidence and support.
In 2010, Enthought participated in EnergizAIR, an ahead-of-its-time project by Intelligent Energy Europe and funded primarily by the European Union. EnergizAIR was designed to provide consistent visibility of the contribution of renewable energy sources by integrating them into standard media weather reports with three objectives: to make European citizens aware of the contribution of renewable energy sources, to help them understand the energy sphere, and to encourage them to support sustainable energy management.
Enthought’s role was to create the data management framework that would retrieve raw energy and meteorological data, store and process it, and provide interpretations, as well as create and distribute reports in various formats to media channels.
The project was successful in integrating renewable energy data with traditional weather data for a media audience of 2.5 million through 19 channels. Enthought worked closely with the EnergizAIR team using rapid iterations and ensuring complete transparency for the test-driven development. This enabled obtaining and implementing quick feedback. The result was a well-tested solution that was flexible and extensible while remaining readable and requiring minimal Python knowledge to extend and modify.
There are a number of possibilities for a similar project today to influence individual behaviors for energy sources and consumption, integrating weather information, with orders of magnitude more data, cloud, AI/machine learning and personal mobile devices. Enthought has similarly advanced over the last 10 years in ways that could meet the challenge. Scalable cloud-enabled infrastructures would be key, integrating the latest AI/machine learning models for data processing, analysis and sharing. Perhaps time for us to approach the EU – we have it covered.
To learn more, read the case study here.
About the Author
Didrik Pinte, CTO at Enthought holds an M.S. in bio-engineering and an M.S. in management from the Catholic University of Louvain (UCL) in Belgium. He is an expert in artificial intelligence, data management, and software development. He served as a research assistant at UCL, developing Python-based integrated water resource management applications.
Related Content
R&D Innovation in 2025
As we step into 2025, R&D organizations are bracing for another year of rapid-pace, transformative shifts.
Revolutionizing Materials R&D with “AI Supermodels”
Learn how AI Supermodels are allowing for faster, more accurate predictions with far fewer data points.
What to Look for in a Technology Partner for R&D
In today’s competitive R&D landscape, selecting the right technology partner is one of the most critical decisions your organization can make.
Digital Transformation vs. Digital Enhancement: A Starting Decision Framework for Technology Initiatives in R&D
Leveraging advanced technology like generative AI through digital transformation (not digital enhancement) is how to get the biggest returns in scientific R&D.
Digital Transformation in Practice
There is much more to digital transformation than technology, and a holistic strategy is crucial for the journey.
Leveraging AI for More Efficient Research in BioPharma
In the rapidly-evolving landscape of drug discovery and development, traditional approaches to R&D in biopharma are no longer sufficient. Artificial intelligence (AI) continues to be a...
Utilizing LLMs Today in Industrial Materials and Chemical R&D
Leveraging large language models (LLMs) in materials science and chemical R&D isn't just a speculative venture for some AI future. There are two primary use...
Top 10 AI Concepts Every Scientific R&D Leader Should Know
R&D leaders and scientists need a working understanding of key AI concepts so they can more effectively develop future-forward data strategies and lead the charge...
Why A Data Fabric is Essential for Modern R&D
Scattered and siloed data is one of the top challenges slowing down scientific discovery and innovation today. What every R&D organization needs is a data...
Jupyter AI Magics Are Not ✨Magic✨
It doesn’t take ✨magic✨ to integrate ChatGPT into your Jupyter workflow. Integrating ChatGPT into your Jupyter workflow doesn’t have to be magic. New tools are…